您所在的位置:性爱视频 - 学术研究 - 学术成果

学术成果

梁婉婉,Network-Assisted High-Dimensional Factor Model Estimation,《Journal of Business & Economic Statistics》,2025.08

论文名称:Network-Assisted High-Dimensional Factor Model Estimation

刊名:Journal of Business & Economic Statistics

发表时间:2025.08

论文介绍:

本文利用组层面的异质性和网络凝聚现象来提升近似因子模型的估计精度。随着计算机技术的快速发展,大规模异质性面板数据日益可得。因子模型是一种用于总结大型数据集信息的有效方法。越来越多的实证研究表明,经济与金融面板数据中未被观测的异质性存在分组模式,即组内资产的联动性往往高于组间资产。在建模时纳入这种分组异质性模式不仅是必要的,也与实证观察结果相一致。

为了灵活捕捉面板数据中未被观测的组层面异质性,本文假设真实因子载荷向量之间存在潜在的分组结构,同一组内的载荷向量相似但不完全相同。组的数量和组别归属关系均未知。另一方面,在经济学和金融学的许多应用中,研究者往往可以观测到基于行业分类、股权关系或经验相关性度量等所构建的网络。观测到的网络在一定程度上捕捉了大规模横截面个体之间的相互联系。因此,网络中蕴含的相关且正确的聚类信息,对于帮助我们学习潜在的分组结构和因子结构具有重要作用。受上述思想启发,本文提出了一种网络辅助的最大伪似然方法。该方法在负对数似然中引入经典的 K-means 惩罚与拉普拉斯惩罚,以灵活捕捉面板数据中未观测到的异质性,并有效利用网络信息,从而提升近似因子模型的估计精度。

在理论层面,本文在允许异质误差同时存在横截面相关性和异方差性的近似因子模型框架下,系统建立了各估计量的收敛速度,并允许潜在分组数被高估。同时,本文提出了一种基于似然的信息准则,能够在实践中准确地识别真实分组数。在算法层面,本文提出了一种高效的计算方法,能够充分利用网络信息,并联合优化潜在组结构、因子结构以及误差协方差矩阵。在数值层面,系统的模拟研究验证了所提出方法的理论性质,两个实证应用(股票投资组合分析与宏观经济预测)进一步展示了本文方法的实际应用价值与优越性。


论文摘要:

This paper takes advantage of group-level heterogeneity and network cohesion phenomenon to improve the estimation accuracy of approximate factor models. As large heterogeneous panels become available, a grouped pattern of unobserved heterogeneity in the panel data is highlighted. Clustering of factor loadings provides a solution to model group-level heterogeneity. Moreover, networks are frequently observed in economics and finance, which capture the interconnectivity between large-scale cross-sectional units and thus should aid in learning the latent group structure. Therefore, we propose a maximum likelihood-based method that equips the negative log-likelihood with two novel regularization terms, where a classical K-means penalty is enforced to encourage community structure among the factor loading vectors and a Laplacian penalty is enforced to encourage similarity in the factor loadings corresponding to linked individuals. A computationally efficient algorithm is developed to implement penalized maximum-likelihood estimation. Under mild assumptions, we establish concise convergence rates of the model-based estimators, allowing the number of latent groups to be over-specified. A likelihood-based information criterion is developed to consistently identify the true group number for practical use. Thorough simulation studies support the asymptotic results. Finally, applications to two real datasets demonstrate the practical relevance and superiority of our method.


论文链接://doi.org/10.1080/07350015.2025.2548851